Updated list of written publications

Preprints (full text available)

  • Keane, A., Pohl, A., Dijkstra, H., Ridgwell, A. A simple mechanism for stable oscillations in an intermediate complexity Earth System Model. [link]

  • Cermeno, P., Garcia-Comas, C., Pohl, A., Williams, S., Benton, M., Le Gland, G., Muller, R.D., Ridgwell, A., Vallina, S. Post-extinction recovery of the Phanerozoic oceans and the rise of biodiversity hotspots. [link]

  • *Pohl, A., *Ridgwell, A., Stockey, R.G., Thomazo, C., Keane, A., Vennin, E., Scotese, C. Plate motion drives variability in ocean oxygenation through the Phanerozoic. [link] * authors contributed equally


International Publications


[22] Maffre, P., Godderis, Y., Pohl, A., Donnadieu, Y., Carretier, S., Le Hir, G., 2022. The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian. American Journal of Science 322(3), 461-492, doi:10.2475/03.2022.02. [link]


[21] Pohl, A., Lu, Z., Lu, W., Stockey, R.G., Elrick, M., Li, M., Desrochers, A., Shen, Y., He, R., Finnegan, S., Ridgwell, A., 2021. Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation. Nature Geoscience 14(11), doi:10.1038/s41561-021-00843-9. [link]

[20] Stockey, R.G., Pohl, A., Ridgwell, A., Finnegan, S., Sperling, A., 2021, Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology, PNAS, v. 118(41), e2101900118, doi:10.1073/pnas.2101900118. [link]

[19] *Wong Hearing, T.W., *Pohl, A., *Williams, M., Donnadieu, Y., Harvey, T.H.P., Scotese, C.R., Sepulchre, P., Franc, A., and Vandenbroucke, T.R.A., 2021, Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate: Nature Communications, v. 12, p. 3868, doi:10.1038/s41467-021-24141-5. [link] * authors contributed equally

[18] Zacaï, A., Monnet, C., Pohl, A., Beaugrand, G., Mullins, G., Kroeck, D.M., Servais, T., 2021: Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton. Science Advances 7(15), eabd6709. doi: 10.1126/sciadv.abd6709. [link]

[17] Frau, C., Wimbledon, W.A.P., Ifrim, C., Bulot, L.G., Pohl, A., 2021. Berriasian ammonites of supposed Tethyan origin from the type ‘Ryazanian’, Russia: a systematic re-interpretation. Paleoworld, v. 30(3), p. 515-537. doi: 10.1016/j.palwor.2020.07.004. [link]


[16] Pohl, A., Donnadieu, Y., Godderis, Y., Lanteaume, C., Hairabian, A., Frau, C., Michel, J., Laugié, M., Reijmer, J. J. G., Scotese, C. R. and Jean, B, 2020. Carbonate platform production during the Cretaceous. GSA Bulletin 132(11-12), 2606-2610, doi:10.1130/B35680.1. [link]

[15] Frau, C., Tendil, A.J.B., Pohl, A., Lanteaume, C., 2020. Revising the timing and causes of the Urgonian rudistid-platform demise in the Mediterranean Tethys. Global and Planetary Change 187, 103124. doi: 10.1016/j.apcatb.2019.118224. [link]


[14] Saupe, E., Qiao, H., Donnadieu, Y., Farnsworth, A., Kennedy-Asser, A., Ladant, J.-B., Lunt, D., Pohl, A., Valdes, P., Finnegan, S., 2019. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience 12, 65–70. doi: 10.1038/s41561-019-0504-6. [link]

[13] Laugié, M., Michel, J., Pohl, A., Poli, E., Borgomano, J., 2019. Global distribution of modern shallow-water marine carbonate factories: a spatial model based on environmental parameters. Scientific Reports 9(1), 16432. doi:10.1038/s41598-019-52821-2. [link]

[12] Michel, J., Laugié, M., Pohl, A., Lanteaume, C., Masse, J-.P., Frau, C., Donnadieu, Y., Borgomano, J., 2019. Marine carbonate factories: a global model of carbonate platform distribution. International journal of Earth Sciences 108(6), 1773-1792. doi:10.1007/s00531-019-01742-6. [link]

[11] Pohl, A., Laugié, M., Borgomano, J., Michel, J., Lanteaume, C., Scotese, C.R., Frau, C., Poli, E., Donnadieu, Y., 2019. Quantifying the paleogeographic driver of Cretaceous carbonate platform development using paleoecological niche modeling. Paleoceanography and Paleoclimatology 514, 222-232. doi:10.1016/j.palaeo.2018.10.017. [link]


[10] Ruvalcaba Baroni, I., Pohl, A., van Helmond, N.A.G.M., Papadomanolaki, N.M., Coe, A.L., Cohen, A.S., van de Shootbrugge, B., Donnadieu, Y., Slomp, C.P., 2018. Ocean circulation in the Toarcian (Early Jurassic): a key control on deoxygenation and carbon burial on the European Shelf. Paleoceanography and Paleoclimatology 33(9), 994-1012. doi:10.1029/2018PA003394. [link]

[9] Pohl, A., Austermann, J., 2018. A sea-level fingerprint of the Late Ordovician ice-sheet collapse. Geology 46(7), 595-598. doi:10.1130/G40189.1. [link]

[8] Hearing, T. W., Harvey, T.H.P., Williams, M., Leng, M.J., Lamb, A.L., Wilby, P.R., Gabbott, S.R., Pohl, A., Donnadieu, Y., 2018. An early Cambrian greenhouse climate. Science Advances 4(5), eaar5690. doi:10.1126/sciadv.aar5690. [link]


[7] Pohl, A., Harper, D.A.T., Donnadieu, Y., Le Hir, G., Nardin, E., Servais, T., 2017. Possible patterns of marine primary productivity during the Great Ordovician Biodiversification Event. Lethaia 5(2), 187-197. doi:10.1111/let.12247. [link]

[6] Pohl, A., Donnadieu Y., Le Hir G., Ferreira D., 2017. The climatic significance of Late Ordovician–early Silurian black shales. Paleoceanography 32(4), 397-423. doi:10.1002/2016PA003064. [link]


[5] Pohl, A., Donnadieu, Y., Le Hir, G., Ladant, J.B., Dumas, C., Alvarez-Solas, J., Vandenbroucke, T.R.A., 2016. Glacial onset predated Late Ordovician climate cooling. Paleoceanography 31, 800–821. doi:10.1002/(ISSN)1944-9186. [link]

[4] Porada, P., Lenton, T.M., Pohl, A., Weber, B., Mander, L., Donnadieu, Y., Beer, C., Pöschl, U., Kleidon, A., 2016. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nature Communications 7, 12113. doi:10.1038/ncomms12113. [link]

[3] Pohl, A., Nardin, E., Vandenbroucke, T., Donnadieu, Y., 2016. High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels. Palaeogeography, Palaeoclimatology, Palaeoecology 458, 39–51. doi:10.1016/j.palaeo.2015.09.036. [link]

Before 2016

[2] Pohl, A., Donnadieu, Y., Le Hir, G., Buoncristiani, J.F., Vennin, E., 2014. Effect of the Ordovician paleogeography on the (in)stability of the climate. Climate of the Past 10, 2053–2066. doi:10.5194/cp-10-2053-2014. [link]

[1] Godon, C., Mugnier, J.-L., Fallourd, R., Paquette, J.-L., Pohl, A., Buoncristiani, J.-F., 2013. The Bossons glacier protects Europe’s summit from erosion. Earth and Planetary Science Letters 375, 135–147. doi:10.1016/j.epsl.2013.05.018. [link]


Book Chapters

[1] Goddéris Y., Donnadieu Y., Pohl A., 2021. The Phanerozoic Climate. In: Ramstein G., Landais A., Bouttes N., Sepulchre P., Govin A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, pp. 359–383. doi: 10.1007/978-3-030-24982-3_27. [link]



[1] Pohl, A., Donnadieu, Y., Le Hir, G. La modélisation peut-elle aider à comprendre le climat d’il y a 450 millions d’années? La Météorologie 105, 29–37. doi: 10.4267/2042/70167. [link]