Updated list of written publications

International Publications



[20] Stockey, R.G., Pohl, A., Ridgwell, A., Finnegan, S., Sperling, A., 2021, Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology, PNAS, v. 118(41), e2101900118, doi:10.1073/pnas.2101900118. [link]

[19] Wong Hearing, T.W., Pohl, A., Williams, M., Donnadieu, Y., Harvey, T.H.P., Scotese, C.R., Sepulchre, P., Franc, A., and Vandenbroucke, T.R.A., 2021, Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate: Nature Communications, v. 12, p. 3868, doi:10.1038/s41467-021-24141-5. [link]

[18] Zacaï, A., Monnet, C., Pohl, A., Beaugrand, G., Mullins, G., Kroeck, D.M., Servais, T., 2021: Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton. Science Advances 7(15), eabd6709. doi: 10.1126/sciadv.abd6709. [link]

[17] Frau, C., Wimbledon, W.A.P., Ifrim, C., Bulot, L.G., Pohl, A., 2021. Berriasian ammonites of supposed Tethyan origin from the type ‘Ryazanian’, Russia: a systematic re-interpretation. Paleoworld, v. 30(3), p. 515-537. doi: 10.1016/j.palwor.2020.07.004. [link]



[16] Pohl, A., Donnadieu, Y., Godderis, Y., Lanteaume, C., Hairabian, A., Frau, C., Michel, J., Laugié, M., Reijmer, J. J. G., Scotese, C. R. and Jean, B, 2020. Carbonate platform production during the Cretaceous. GSA Bulletin 132(11-12), 2606-2610, doi:10.1130/B35680.1. [link]

[15] Frau, C., Tendil, A.J.B., Pohl, A., Lanteaume, C., 2020. Revising the timing and causes of the Urgonian rudistid-platform demise in the Mediterranean Tethys. Global and Planetary Change 187, 103124. doi: 10.1016/j.apcatb.2019.118224. [link]



[14] Saupe, E., Qiao, H., Donnadieu, Y., Farnsworth, A., Kennedy-Asser, A., Ladant, J.-B., Lunt, D., Pohl, A., Valdes, P., Finnegan, S., 2019. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience 12, 65–70. doi: 10.1038/s41561-019-0504-6. [link]

[13] Laugié, M., Michel, J., Pohl, A., Poli, E., Borgomano, J., 2019. Global distribution of modern shallow-water marine carbonate factories: a spatial model based on environmental parameters. Scientific Reports 9(1), 16432. doi:10.1038/s41598-019-52821-2. [link]

[12] Michel, J., Laugié, M., Pohl, A., Lanteaume, C., Masse, J-.P., Frau, C., Donnadieu, Y., Borgomano, J., 2019. Marine carbonate factories: a global model of carbonate platform distribution. International journal of Earth Sciences 108(6), 1773-1792. doi:10.1007/s00531-019-01742-6. [link]

[11] Pohl, A., Laugié, M., Borgomano, J., Michel, J., Lanteaume, C., Scotese, C.R., Frau, C., Poli, E., Donnadieu, Y., 2019. Quantifying the paleogeographic driver of Cretaceous carbonate platform development using paleoecological niche modeling. Paleoceanography and Paleoclimatology 514, 222-232. doi:10.1016/j.palaeo.2018.10.017. [link]



[10] Ruvalcaba Baroni, I., Pohl, A., van Helmond, N.A.G.M., Papadomanolaki, N.M., Coe, A.L., Cohen, A.S., van de Shootbrugge, B., Donnadieu, Y., Slomp, C.P., 2018. Ocean circulation in the Toarcian (Early Jurassic): a key control on deoxygenation and carbon burial on the European Shelf. Paleoceanography and Paleoclimatology 33(9), 994-1012. doi:10.1029/2018PA003394. [link]

[9] Pohl, A., Austermann, J., 2018. A sea-level fingerprint of the Late Ordovician ice-sheet collapse. Geology 46(7), 595-598. doi:10.1130/G40189.1. [link]

[8] Hearing, T. W., Harvey, T.H.P., Williams, M., Leng, M.J., Lamb, A.L., Wilby, P.R., Gabbott, S.R., Pohl, A., Donnadieu, Y., 2018. An early Cambrian greenhouse climate. Science Advances 4(5), eaar5690. doi:10.1126/sciadv.aar5690. [link]



[7] Pohl, A., Harper, D.A.T., Donnadieu, Y., Le Hir, G., Nardin, E., Servais, T., 2017. Possible patterns of marine primary productivity during the Great Ordovician Biodiversification Event. Lethaia 5(2), 187-197. doi:10.1111/let.12247. [link]

[6] Pohl, A., Donnadieu Y., Le Hir G., Ferreira D., 2017. The climatic significance of Late Ordovician–early Silurian black shales. Paleoceanography 32(4), 397-423. doi:10.1002/2016PA003064. [link]



[5] Pohl, A., Donnadieu, Y., Le Hir, G., Ladant, J.B., Dumas, C., Alvarez-Solas, J., Vandenbroucke, T.R.A., 2016. Glacial onset predated Late Ordovician climate cooling. Paleoceanography 31, 800–821. doi:10.1002/(ISSN)1944-9186. [link]

[4] Porada, P., Lenton, T.M., Pohl, A., Weber, B., Mander, L., Donnadieu, Y., Beer, C., Pöschl, U., Kleidon, A., 2016. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nature Communications 7, 12113. doi:10.1038/ncomms12113. [link]

[3] Pohl, A., Nardin, E., Vandenbroucke, T., Donnadieu, Y., 2016. High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels. Palaeogeography, Palaeoclimatology, Palaeoecology 458, 39–51. doi:10.1016/j.palaeo.2015.09.036. [link]


Before 2016

[2] Pohl, A., Donnadieu, Y., Le Hir, G., Buoncristiani, J.F., Vennin, E., 2014. Effect of the Ordovician paleogeography on the (in)stability of the climate. Climate of the Past 10, 2053–2066. doi:10.5194/cp-10-2053-2014. [link]

[1] Godon, C., Mugnier, J.-L., Fallourd, R., Paquette, J.-L., Pohl, A., Buoncristiani, J.-F., 2013. The Bossons glacier protects Europe’s summit from erosion. Earth and Planetary Science Letters 375, 135–147. doi:10.1016/j.epsl.2013.05.018. [link]



Book Chapters

[1] Goddéris Y., Donnadieu Y., Pohl A., 2021. The Phanerozoic Climate. In: Ramstein G., Landais A., Bouttes N., Sepulchre P., Govin A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, pp. 359–383. doi: 10.1007/978-3-030-24982-3_27. [link]




[1] Pohl, A., Donnadieu, Y., Le Hir, G. La modélisation peut-elle aider à comprendre le climat d’il y a 450 millions d’années? La Météorologie 105, 29–37. doi: 10.4267/2042/70167. [link]