Updated list of written publications

(**) Students supervised


[2] **Eliahou Ontiveros, D., Beaugrand, G., Lefebvre, B., Markussen Marcilly, C., Servais, T., Pohl, A. Cooling Oceans Did Trigger Ordovician Biodiversification. In review for Nature Communications [link].

[1] Keane, A., Pohl, A., Dijkstra, H. A., Ridgwell, A. A simple mechanism for stable oscillations in the large-scale ocean circulation. In review for Climate Dynamics [link].


International Publications


[26] Pohl, A., Nardin, E., Vandenbroucke, T.R.A., Donnadieu, Y., 2022. The Ordovician ocean circulation: a modern synthesis based on data and models. Geological Society Special Publication 532. doi:10.1144/SP532-2022-1. [link].

[25] *Pohl, A., *Ridgwell, A., Stockey, R.G., Thomazo, C., Keane, A., Vennin, E., Scotese, C., 2022. Continental configuration controls ocean oxygenation during the Phanerozoic. Nature 608(7923), 523-527. doi:10.1038/s41586-022-05018-z. [link] * authors contributed equally

[24] Marcilly, C., Maffre, P., Le Hir G., Pohl, A., Fluteau, F., Goddéris, Y., Donnadieu, Y., Heimdal, T.H., Torsvik, T.H., 2022. Understanding the early Paleozoic carbon cycle balance and climate change from modelling. Earth and Planetary Science Letters 594, 117717. doi:10.1016/j.epsl.2022.117717. [link]

[23] Cermeño, P., Garcìa-Comas, C., Pohl, A., Williams, S., Benton, M., Le Gland, G., Muller, R.D., Ridgwell, A., Vallina, S., 2022. Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots. Nature, doi: 10.1038/s41586-022-04932-6. [link]

[22] Maffre, P., Godderis, Y., Pohl, A., Donnadieu, Y., Carretier, S., Le Hir, G., 2022. The complex response of continental silicate rock weathering to the colonization of the continents by vascular plants in the Devonian. American Journal of Science 322(3), 461-492, doi:10.2475/03.2022.02. [link]


[21] Pohl, A., Lu, Z., Lu, W., Stockey, R.G., Elrick, M., Li, M., Desrochers, A., Shen, Y., He, R., Finnegan, S., Ridgwell, A., 2021. Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation. Nature Geoscience 14(11), doi:10.1038/s41561-021-00843-9. [link]

[20] Stockey, R.G., Pohl, A., Ridgwell, A., Finnegan, S., Sperling, A., 2021, Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology, PNAS, v. 118(41), e2101900118, doi:10.1073/pnas.2101900118. [link]

[19] *Wong Hearing, T.W., *Pohl, A., *Williams, M., Donnadieu, Y., Harvey, T.H.P., Scotese, C.R., Sepulchre, P., Franc, A., and Vandenbroucke, T.R.A., 2021, Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate: Nature Communications, v. 12, p. 3868, doi:10.1038/s41467-021-24141-5. [link] * authors contributed equally

[18] Zacaï, A., Monnet, C., Pohl, A., Beaugrand, G., Mullins, G., Kroeck, D.M., Servais, T., 2021: Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton. Science Advances 7(15), eabd6709. doi: 10.1126/sciadv.abd6709. [link]

[17] Frau, C., Wimbledon, W.A.P., Ifrim, C., Bulot, L.G., Pohl, A., 2021. Berriasian ammonites of supposed Tethyan origin from the type ‘Ryazanian’, Russia: a systematic re-interpretation. Paleoworld, v. 30(3), p. 515-537. doi: 10.1016/j.palwor.2020.07.004. [link]


[16] Pohl, A., Donnadieu, Y., Godderis, Y., Lanteaume, C., Hairabian, A., Frau, C., Michel, J., Laugié, M., Reijmer, J. J. G., Scotese, C. R. and Jean, B, 2020. Carbonate platform production during the Cretaceous. GSA Bulletin 132(11-12), 2606-2610, doi:10.1130/B35680.1. [link]

[15] Frau, C., Tendil, A.J.B., Pohl, A., Lanteaume, C., 2020. Revising the timing and causes of the Urgonian rudistid-platform demise in the Mediterranean Tethys. Global and Planetary Change 187, 103124. doi: 10.1016/j.apcatb.2019.118224. [link]


[14] Saupe, E., Qiao, H., Donnadieu, Y., Farnsworth, A., Kennedy-Asser, A., Ladant, J.-B., Lunt, D., Pohl, A., Valdes, P., Finnegan, S., 2019. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience 12, 65–70. doi: 10.1038/s41561-019-0504-6. [link]

[13] Laugié, M., Michel, J., Pohl, A., Poli, E., Borgomano, J., 2019. Global distribution of modern shallow-water marine carbonate factories: a spatial model based on environmental parameters. Scientific Reports 9(1), 16432. doi:10.1038/s41598-019-52821-2. [link]

[12] Michel, J., Laugié, M., Pohl, A., Lanteaume, C., Masse, J-.P., Frau, C., Donnadieu, Y., Borgomano, J., 2019. Marine carbonate factories: a global model of carbonate platform distribution. International journal of Earth Sciences 108(6), 1773-1792. doi:10.1007/s00531-019-01742-6. [link]

[11] Pohl, A., Laugié, M., Borgomano, J., Michel, J., Lanteaume, C., Scotese, C.R., Frau, C., Poli, E., Donnadieu, Y., 2019. Quantifying the paleogeographic driver of Cretaceous carbonate platform development using paleoecological niche modeling. Paleoceanography and Paleoclimatology 514, 222-232. doi:10.1016/j.palaeo.2018.10.017. [link]


[10] Ruvalcaba Baroni, I., Pohl, A., van Helmond, N.A.G.M., Papadomanolaki, N.M., Coe, A.L., Cohen, A.S., van de Shootbrugge, B., Donnadieu, Y., Slomp, C.P., 2018. Ocean circulation in the Toarcian (Early Jurassic): a key control on deoxygenation and carbon burial on the European Shelf. Paleoceanography and Paleoclimatology 33(9), 994-1012. doi:10.1029/2018PA003394. [link]

[9] Pohl, A., Austermann, J., 2018. A sea-level fingerprint of the Late Ordovician ice-sheet collapse. Geology 46(7), 595-598. doi:10.1130/G40189.1. [link]

[8] Hearing, T. W., Harvey, T.H.P., Williams, M., Leng, M.J., Lamb, A.L., Wilby, P.R., Gabbott, S.R., Pohl, A., Donnadieu, Y., 2018. An early Cambrian greenhouse climate. Science Advances 4(5), eaar5690. doi:10.1126/sciadv.aar5690. [link]


[7] Pohl, A., Harper, D.A.T., Donnadieu, Y., Le Hir, G., Nardin, E., Servais, T., 2017. Possible patterns of marine primary productivity during the Great Ordovician Biodiversification Event. Lethaia 5(2), 187-197. doi:10.1111/let.12247. [link]

[6] Pohl, A., Donnadieu Y., Le Hir G., Ferreira D., 2017. The climatic significance of Late Ordovician–early Silurian black shales. Paleoceanography 32(4), 397-423. doi:10.1002/2016PA003064. [link]

2016 and before

[5] Pohl, A., Donnadieu, Y., Le Hir, G., Ladant, J.B., Dumas, C., Alvarez-Solas, J., Vandenbroucke, T.R.A., 2016. Glacial onset predated Late Ordovician climate cooling. Paleoceanography 31, 800–821. doi:10.1002/(ISSN)1944-9186. [link]

[4] Porada, P., Lenton, T.M., Pohl, A., Weber, B., Mander, L., Donnadieu, Y., Beer, C., Pöschl, U., Kleidon, A., 2016. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nature Communications 7, 12113. doi:10.1038/ncomms12113. [link]

[3] Pohl, A., Nardin, E., Vandenbroucke, T., Donnadieu, Y., 2016. High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels. Palaeogeography, Palaeoclimatology, Palaeoecology 458, 39–51. doi:10.1016/j.palaeo.2015.09.036. [link]

[2] Pohl, A., Donnadieu, Y., Le Hir, G., Buoncristiani, J.F., Vennin, E., 2014. Effect of the Ordovician paleogeography on the (in)stability of the climate. Climate of the Past 10, 2053–2066. doi:10.5194/cp-10-2053-2014. [link]

[1] Godon, C., Mugnier, J.-L., Fallourd, R., Paquette, J.-L., Pohl, A., Buoncristiani, J.-F., 2013. The Bossons glacier protects Europe’s summit from erosion. Earth and Planetary Science Letters 375, 135–147. doi:10.1016/j.epsl.2013.05.018. [link]


Data papers

[1] Pohl, A., Wong Hearing, T., Franc, A., Sepulchre, P., Scotese, C.R., 2022. Dataset of Phanerozoic continental climate and Köppen–Geiger climate classes. Data in Brief 43, 108424. doi:10.1016/j.dib.2022.108424. [link]


Book Chapters

[1] Goddéris Y., Donnadieu Y., Pohl A., 2021. The Phanerozoic Climate. In: Ramstein G., Landais A., Bouttes N., Sepulchre P., Govin A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, pp. 359–383. doi: 10.1007/978-3-030-24982-3_27. [link]



[1] Pohl, A., Donnadieu, Y., Le Hir, G. La modélisation peut-elle aider à comprendre le climat d’il y a 450 millions d’années? La Météorologie 105, 29–37. doi: 10.4267/2042/70167. [link]



  • Phanerozoic continental climate and Köppen–Geiger climate classes (NetCDF files) [link]

  • Cretaceous global climatic fields simulated using the FOAM ocean-atmosphere general circulation model (NetCDF files) [link]



  • cGENIE-based metabolic index calculations [link]

  • R script for converting .nc climate model (FOAM) files into Koppen-Geiger climate classes [link]